德克西尔,专注工业传感——精准感知每一数据节点。

新闻资讯

Technical articles

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 新闻资讯 > 技术文章

煤矿氢气传感器应该设置在哪比较合理

来源:德克西尔 时间:2024-03-28 17:06:59

        在煤矿安全生产管理中,氢气传感器的合理布局与有效应用对于防止潜在爆炸事故、保障矿工生命安全以及维持正常生产秩序至关重要。由于氢气具有高度可燃性,即使在较低浓度下也有可能引发火灾或爆炸,尤其是在煤矿这种复杂且封闭的地下环境中,氢气的监测更是必不可少。以下是关于煤矿氢气传感器设置方案的详细阐述:

氢气传感器网络架构图

        (一)易发生氢气泄漏区域

        从源头防范的角度出发,氢气传感器应当优先部署在可能发生氢气泄漏的关键区域。这主要包括煤矿井下的各类机电设备集中区,尤其是那些使用电解水、燃料电池技术或者存在油脂、塑料等有机物燃烧产生氢气可能性的设施周边。此外,存储和输送氢气的相关设备,如氢气储存罐及其管线接口、阀门连接处,以及容易因电气火花等原因导致氢气生成或泄漏的电气设备和电缆接头位置,都应成为氢气传感器的必设点。

        (二)通风不良区域

        针对煤矿井下通风状况的影响,氢气传感器应着重布置在通风不良或气体易于积聚的特殊地段。比如巷道交汇处、盲巷内部、采空区边缘地带,这些地方由于风流扰动小,气体容易形成局部富集,一旦有氢气泄露,若无及时监测预警,极易酿成严重后果。

        (三)关键运输通道

        考虑到人员密集和物资流通频繁的安全隐患,矿井的主要运输通道,诸如主斜井、副斜井、平硐等入口和出口处,以及各运输巷道的核心节点,均应安装氢气传感器,确保任何时段都能快速捕捉到氢气浓度的变化情况,从而采取相应措施。

        (四)安全监测系统覆盖区域

        按照国家规定的《GBT 50493-2019石油化工可燃气体和有毒气体检测报警设计标准》以及《煤矿安全规程》等规范要求,氢气传感器的分布应当均匀合理,确保覆盖矿井的所有工作面和重要场所,确保在有效探测半径内(如通常室内建议距离为7.5米,室外则可扩展至15米)能够准确、实时地监测氢气浓度。

        (五)特别注意区域

        针对某些煤矿特有的工艺过程或地质特点可能导致氢气生成的情况,需要特别关注并针对性地增设氢气传感器。例如,在煤炭自燃、煤层气开发过程中,或是含有硫化矿物的矿区,因氧化作用可能会释放氢气,故应在相应的生产工艺环节及早布设监测点。

        (六)紧急撤离路线

        在紧急撤离预案中,氢气传感器也是不可或缺的一部分。在所有紧急疏散通道、避难硐室入口及周边环境,应当预先安装传感器,确保在突发氢气泄漏事件中,能够第一时间警示现场人员,并指导他们沿正确的安全路径迅速撤离。

        综上所述,煤矿氢气传感器的布置规划不仅要求细致入微,而且应随着开采工艺的进步、矿井条件的变化不断优化调整,确保整个监测网络系统始终保持灵敏可靠。此外,所有传感器设备应定期进行校准、维护保养以及必要的更换,以确保在关键时刻发挥其应有的安全保障功能。


关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
哪些洗煤厂已安装德克西尔断链保护器设备?

哪些洗煤厂已安装德克西尔断链保护器设备?

        关于具体哪些洗煤厂已安装德克西尔(杭州德克西智能科技有限公司)的设备,公开渠道暂未披露完整的客户名单或项目明细。出于对客户隐私和商业合作保密性的尊重,德克西尔通常不会在官网或宣传材料中逐一列出终端用户名称,尤其是涉及能源、矿山等敏感行业的项目。        不过,根据德克西尔官方发布的技术案例、行业文章及展会信息,可以确认以下几点:        1.应用区域广泛:其刮板机断链保护器、智能井盖监测终端、护栏碰撞监测系统等产品已在山西、陕西、内蒙古、山东、河北、新疆等煤炭主产区的多个大型洗选项目中落地应用。        2.客户类型明确:主要服务于国有大型煤业集团下属洗煤厂、地方重点能源企业、智能化矿山示范工程等对设备可靠性与安全性要求极高的单位。        3.场景验证充分:公开技术文档提到,德克西尔断链保护器已在“千万吨级动力煤洗选基地”“大型炼焦煤洗选厂”等典型场景稳定运行,并实现“成功预警多起断链事故、避免百万元级损失”等成效,虽未具名,但印证了其在行业头部客户中的实际部署。        4.合作模式多样:除直接供货外,德克西尔也常通过与矿山自动化系统集成商、设计院、设备总包方合作,将产品嵌入整体解决方案,进一步扩大覆盖范围。        建议:        如您希望了解德克西尔在您所在区域或同类洗煤厂的具体应用案例,最有效的方式是直接联系德克西尔官方(电话:135-1581-0281,工作日8:30–17:30),提供您的洗煤厂规模、工艺类型、设备参数等信息,其技术团队可针对性地分享同类型项目的脱敏案例或安排现场演示/试点,帮助您评估产品适配性与价值。        
2025.12.04
温振传感器的常见故障有哪些?

温振传感器的常见故障有哪些?

        温振传感器作为工业设备状态监测的核心部件,其故障会直接影响数据准确性,进而导致设备异常误判或漏判。以下是其6类常见故障及具体特征,方便运维人员快速排查:        一、数据采集类故障:核心功能失效        这是最直接影响监测效果的故障,表现为无法获取温度或振动数据:        温度数据异常:显示固定值(如0℃、200℃或传感器最大量程),或与设备实际温度偏差超过±5℃(排除环境干扰后);        振动数据异常:振动值长期为0(非设备停机状态),或无规则跳变(如突然从1mm/s跳到10mm/s,无设备工况变化);        根源:多为传感器内部芯片损坏(如温度采集NTC芯片、振动压电陶瓷片故障),或信号处理电路烧毁(如长期过压、过流)。        二、安装与连接类故障:外部因素导致数据偏差        非传感器本身损坏,而是安装或接线不当引发的“假性故障”,占比超30%:        安装松动:螺栓固定型传感器未拧紧(扭矩不足,如M5螺栓未达到8N·m),导致振动传递失效——设备振动时,传感器“悬空”,数据比实际低50%以上;        接触不良:贴片式传感器未贴紧设备表面(中间有油污、灰尘),或磁吸式传感器磁力衰减(吸附力<50N),导致温度传导受阻(数据比实际低1020℃);        接线故障:信号线(如485、模拟量线)虚接、短路,或正负极接反(部分传感器无反接保护),表现为“偶尔有数据、偶尔断联”,或直接无输出。        三、环境适应性故障:恶劣工况引发性能下降        温振传感器多用于工业现场(如车间、机房),环境因素易导致故障:        高温老化:长期工作在超过传感器耐受温度的环境(如传感器额定上限85℃,实际工况95℃),会加速内部元件老化,表现为“数据漂移越来越严重”(如每月温度偏差增加1℃);        潮湿锈蚀:在高湿度(>90%RH)或有冷凝水的场景(如冷藏设备附近),传感器外壳或接线端子锈蚀,导致信号短路或接触电阻增大(振动数据波动变大);        粉尘/油污污染:粉尘进入传感器探头(如振动加速度计的敏感元件),会阻碍振动传递;油污覆盖温度探头,会减缓温度响应速度(如设备升温10℃,传感器需30秒以上才显示变化,正常应<10秒)。        四、电源与供电类故障:能量输入异常        传感器依赖外部供电(如DC1224V),供电不稳定会直接影响工作:        欠压故障:供电电压低于传感器最低要求(如额定12V,实际仅8V),导致传感器“低功耗保护”,停止数据采集,或输出数据精度下降(振动值偏差超±20%);        过压烧毁:供电电压突然飙升(如电网波动、电源模块故障,电压达30V以上),击穿传感器内部稳压电路,表现为“通电后无任何反应”(指示灯不亮、无数据输出);        电磁干扰:附近有大功率设备(如变频器、电机),未做电磁屏蔽,导致供电线路引入杂波,表现为“数据有规律波动”(如与电机启动频率同步的跳变)。        五、结构与机械类故障:物理损伤导致功能失效        多为外力或长期磨损引发,常见于设备振动剧烈的场景(如破碎机、风机):        探头损坏:温度探头(如热电偶、PT100探头)被设备机械撞击弯曲、断裂,或振动探头(如加速度计)的金属外壳变形,直接导致对应参数无法采集;        外壳破裂:传感器外壳(多为铝合金或塑料)受重物撞击、跌落(如安装时失手掉落,高度>1米),导致内部元件暴露,易受粉尘、水汽侵蚀,进而引发二次故障;        线缆老化:传感器连接线(尤其是带线缆的型号)长期随设备振动弯曲,或被油污腐蚀,导致线缆内部铜芯断裂,表现为“移动线缆时数据恢复,静止时断联”。        六、校准与漂移类故障:长期使用后的精度失效        传感器并非“一装永逸”,长期使用会出现精度漂移,属于“隐性故障”:        零点漂移:无振动、常温环境下(如设备停机,环境温度25℃),传感器显示温度≠25℃(偏差超±2℃),或振动值≠0(偏差超±0.1mm/s),且无法通过重新校准修正;        灵敏度下降:振动传感器对设备微小振动的“感知能力”变弱——如设备轴承早期磨损(振动值从0.5mm/s升至0.8mm/s),传感器仅显示从0.5mm/s升至0.6mm/s,错过故障预警时机;        根源:多为传感器内部敏感元件(如压电晶体、铂电阻)长期疲劳,或校准参数丢失(如存储芯片故障),通常需要返厂重新校准或更换元件。
2025.09.10
温振传感器输出信号类型有哪些?

温振传感器输出信号类型有哪些?

        温振传感器的输出信号直接决定了其与后端采集设备(如PLC、数据采集卡、工业网关)的兼容性、数据传输距离及测量精度,目前主流输出类型可分为“模拟信号”和“数字信号”两大类,不同类型适配场景差异显著。以下从信号分类、核心特性及选择逻辑三方面详细说明:        一、温振传感器主流输出信号类型(4类核心)        温振传感器需同时输出“温度信号”和”振动信号”,两类信号的输出形式通常一致(部分高端型号可混合输出),主流类型如下:        二、输出信号选择的4大核心逻辑(按需匹配是关键)        选择时需围绕“传输距离、精度需求、现场环境、系统兼容性”四大维度,避免“过度追求高端”或“适配性不足”:        1.优先看“传输距离”:决定信号抗干扰与布线成本        -短距离(≤10m):选“电压信号(0-5V/0-10V)”,如设备本地控制柜就近采集,成本低且无需复杂布线;        -中长距离(10-100m):选“4-20mA电流信号”,如车间内跨区域设备(如从生产线到控制室),抗干扰能力优于电压信号,适合工业强电磁环境;        -超远距离(>100m)或多设备组网:选“RS485/CAN总线”(有线)或“LoRa/NB-IoT”(无线),如厂区多车间设备联网、偏远地区风电场,总线型可减少线缆数量,无线型避免布线难题。        2.再看“精度与稳定性需求”:匹配监测目标        -低精度场景(如设备表面温度±1℃、振动加速度±5%误差可接受):电压信号或基础4-20mA信号即可,满足常规状态监测(如普通电机过热预警);        -高精度场景(如精密机床主轴振动、风电齿轮箱温度监测,需±0.1℃温度误差、±1%振动误差):选“数字信号(RS485/无线)”,数字信号无模拟信号的“传输损耗”,且支持数据校验,避免信号失真;        -高可靠性场景(如石油化工防爆区域、电力设备):优先选“4-20mA两线制”(布线简单,防爆认证易获取)或“工业级无线信号(LoRa/NB-IoT,需满足防爆等级)”。        3.结合“现场环境与布线条件”:减少部署难度        -布线便利场景(如新建车间、设备集中区域):选4-20mA或RS485总线,稳定性高,后期维护方便;        -布线困难场景(如老旧厂房改造、高空设备、户外分散设备):必选“无线信号”(如风机叶片监测用LoRa,户外光伏电站用NB-IoT),无需破坏原有结构,部署效率高;        -强干扰环境(如变频器附近、高压设备旁):避免选电压信号,优先选4-20mA电流信号(抗干扰强)或带屏蔽的RS485总线,减少信号干扰导致的测量误差。        4.最后匹配“后端采集系统”:避免兼容性问题        -若后端是传统仪表、PLC(如西门子S7-200、三菱FX系列):优先选“4-20mA或RS485(Modbus-RTU协议)”,多数PLC自带模拟量输入模块或RS485接口,无需额外加装设备;        -若后端是工业网关、云平台(如阿里云、华为云):选“无线信号(NB-IoT/5G)”或“RS485(需网关转以太网)”,支持数据直接上传云端,适配智能化管理需求;        -若后端是实验室数据采集卡(如NI采集卡):选“电压信号(0-5V)”,采集卡通常自带电压输入通道,无需转换,操作便捷。        三、总结:选择步骤简化        1.明确“传输距离”(短/中/长)→初步锁定信号类型(电压/电流/总线/无线);        2.确认“精度需求”(低/高)和“环境条件”(布线/干扰)→缩小范围;        3.匹配“后端设备兼容性”→确定最终输出信号。        例如:车间内10台电机集中监测,后端用PLC,传输距离20m→选4-20mA电流信号;户外50个光伏逆变器分散布置,后端连云平台,布线困难→选NB-IoT无线信号。
2025.09.05
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码