德克西尔,专注工业传感——精准感知每一数据节点。

新闻资讯

Technical articles

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 新闻资讯 > 技术文章

燃料电池电动汽车安全全球技术法规之碰撞试验标准

来源:德克西尔 时间:2023-11-27 16:35:07

        由于氢燃料电池汽车与传统燃油车相比,技术特点和所用燃料存在较大的差异。传统汽油车发展历程已过百年,而燃料电池汽车的发展才刚刚起步,公众对其安全性稳定性存疑,在选择燃料电池车时存在较多的顾虑。

        氢燃料电池汽车在进行与传统燃油车相似的车辆测试之外还需要针对氢燃料的储运方式、氢气易燃的特性,采取更多试验方法来评估安全性能,保证燃料电池车运行安全。

        今年6月,由中国、美国、韩国和日本共同牵头修订的UN GTR No.13《燃料电池电动汽车安全全球技术法规》(以下简称燃料电池汽车安全法规)经投票表决,获得全票通过。

        UN GTR No.13制定了车辆在碰撞条件下系统完整性的要求,同时,本次修订在2013年发布的侧重于乘用车安全的UN GTR No.13一阶段(目前为二阶段)文本基础上,增加了对重型车辆的安全性要求,更加贴合我国燃料电池车辆物流、客运等应用场景中的试验需求。

        UN GTR No.13中规定的燃料电池车碰撞后完整性要求,包括燃料泄漏限值、封闭空间内的浓度限值和储氢容器位移。

        燃料泄漏限值:在时间间隔Δt内,氢气泄漏的平均体积流量不得超过118NL/min

        封闭空间内的浓度限值:空气中氢气浓度超过4%时遇到明火会发生燃烧,因此氢气泄漏不得导致乘客和行李舱内的氢气体积浓度大于空气体积的4.0%。如果压缩氢气储存系统的截止阀在碰撞后5s内关闭,且压缩氢气储存系统无泄漏,则满足要求。

        储氢容器位移:容器应至少在一个连接点处与车辆保持连接。

        由于氢气本身具有密度小的特点发送泄漏后会快速扩散当车辆发生碰撞后,泄露的氢气积聚在车辆内部封闭环境中,存在爆燃的风险。基于氢气具有无色无味的特性,当发生泄漏很难被发现因此需要在碰撞后进行封闭空间的浓度测试。

        氢气传感器可以测量空气中氢气的含量。这些传感器应经过可追溯的参考校准,以确保在空气中氢气浓度为4.0%时,其精度为±5%。

        此外,氢气传感器的测量能力至少应超过目标条件25%满量程。最后,这些传感器应能够在10秒内对90%满量程的浓度变化做出响应。

        在碰撞之前,氢气传感器按如下所述,放置于车辆的乘客舱和行李舱中。

        1.距离驾驶员座椅上方车顶篷250mm以内,或靠近乘客舱顶部中心;

        2.距离车辆内行李舱顶部100mm内,不会直接受到将要进行的特定碰撞撞击影响。

        3.在乘客舱后排座位前方,距离车内地板250mm范围内;

        安全法规中提出,传感器应牢固地安装在车辆结构或座椅上,不会被碰撞试验导致的碎片、气囊排出的气体和抛射物破坏,并由位于车辆内的仪器或远程传输设备记录碰撞后的测量值。

        氢气传感器在车辆停止后开始采集封闭空间内的碰撞数据。在碰撞后持续的60分钟内,应至少每5秒采集一次来自传感器的数据。在碰撞后60分钟测试期间,每个传感器的读数应始终低于目标标准4.0%

        试验内容除了上述提到的封闭空间氢气浓度测试,对于车辆不同的储氢方式,法规中也进行了针对压缩氢气储存系统和液氢储存系统(LHSS)的泄漏测试标准。

        为了更加符合国内燃料电池车辆的使用场景和技术特点,我国的相关机构和企业也开始进行有关燃料电池车辆碰撞测试的标准制定工作。有相关专家表示:燃料电池汽车总体的发展质量和水平还在提高,安全性是它的关键指标之一,应该得到更多的关注。

        今年5月,在襄阳举行燃料电池电动汽车碰撞后安全及系统耐久性标准专题研究组会议。GB/T《燃料电池电动汽车碰撞后安全要求》主要讨论了测试对象、整车碰撞/滑车测试选择、不同类型车辆碰撞要求分类、压缩氢气储存系统温度测量等方面内容。

        为探索氢能与燃料电池产业成长路径,构建开放共赢的发展格局,氢启未来网将于1129日在成都市经济技术开发区举办“HVFC 2023中国(成都)氢能汽车与燃料电池产业发展大会

        大会拟邀请政府部门、行业协会、知名企业、科研机构等相聚成都,共同探讨氢能汽车与燃料电池产业有关话题,搭建行业交流与合作平台,交流学术思想,助力产业发展。

         

        


关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
如何判断氢气传感器的抗干扰能力

如何判断氢气传感器的抗干扰能力

        判断氢气传感器的抗干扰能力可以从以下几个方面入手:        1.产品规格说明        交叉灵敏度(Cross-sensitivity):查看传感器对其他气体(如CO、H₂S、CH₄等)的灵敏度,交叉灵敏度越低,抗干扰能力越强。        选择性(Selectivity):传感器对目标气体(氢气)的选择性越高,受其他气体干扰的可能性越小。        2.实际测试        干扰气体测试:在实验环境中,向传感器通入含有目标气体和干扰气体的混合气体,观察其是否能够准确检测氢气浓度而不受干扰。        稳定性测试:在复杂气体环境中长期运行传感器,验证其是否能够保持稳定性和准确性。        3.传感器结构设计        纳米材料或催化剂:部分传感器(如量子电导型传感器)采用纳米材料,可以显著提高抗干扰能力。        封装技术:传感器的封装设计是否能够有效隔绝灰尘、湿度或其他环境因素,直接影响其抗干扰性能。        4.数据处理算法        补偿算法:一些传感器通过内置算法对干扰气体进行补偿,从而提高检测的准确性。        软件过滤:传感器是否支持软件过滤功能,可以进一步降低干扰气体的影响。        5.品牌和制造商        选择知名品牌或有良好口碑的制造商,通常其传感器在设计上会考虑抗干扰能力,且提供更详细的测试数据和应用支持。        总结        抗干扰能力是氢气传感器的关键性能指标,可以通过产品规格、实际测试、结构设计、数据处理算法和品牌选择等方面综合判断。确保传感器在复杂环境中仍能准确检测氢气,避免误报或漏报,从而提高检测系统的可靠性和安全性。
2025.07.18
温湿度传感器如何校准?

温湿度传感器如何校准?

        温湿度传感器广泛应用于工业、农业、仓储、实验室等领域,用于实时监测环境中的温度和湿度数据。然而,传感器在长期使用或受到环境干扰后,可能会出现测量误差。因此,定期校准传感器是确保其测量精度的关键所在。        1.什么是温湿度传感器校准?        校准是通过将传感器的测量值与已知标准值进行对比,调整传感器的输出,使其达到更高的测量准确度的过程。校准可以消除传感器因时间、环境或老化引起的偏差。        2.校准温湿度传感器的步骤是什么?        •准备校准工具:        需要使用标准温湿度源(如温湿度校准箱)或已知精度的参考传感器。        •断开电源或信号输出:        在校准前,确保传感器与设备断开电源或信号输出,避免干扰。        •设置标准值:        将标准温湿度源设置为目标值(如25℃、50%RH)。        •测量传感器输出:        记录传感器在标准环境下的测量值。        •调整校准参数:        根据测量值与标准值的偏差,调整传感器的校准参数(如零点、灵敏度)。        •验证校准结果:        重新测量传感器的输出,确认校准后精度是否符合要求。        3.校准温湿度传感器需要哪些工具?        •温湿度校准箱或标准温湿度源。        •校准软件或手动调整工具(根据传感器类型)。        •精确的温度计和湿度计(作为参考标准)。        •安全工具(如螺丝刀、万用表等)。        4.温湿度传感器的校准周期是多久?        校准周期取决于传感器的使用环境和精度要求:        •在实验室或精密测量环境中,建议每3-6个月校准一次。        •在工业或仓储环境中,建议每6-12个月校准一次。        •如果传感器长期处于高温、高湿或恶劣环境中,校准周期应适当缩短。        5.校准温湿度传感器时需要注意哪些事项?        •断电操作:校准前确保传感器断电,避免损坏设备。        •校准环境:选择稳定、无干扰的环境进行校准,避免温度和湿度波动。        •校准数据记录:详细记录校准前后的数据,便于后续对比和维护。        •校准后检查:校准完成后,重新测试传感器的测量精度,确保校准有效。        6.温湿度传感器校准的常见错误有哪些?        •忽略校准环境的稳定性。        •使用不合格的校准工具或参考标准。        •校准过程中未断开电源或信号输出。        •忽略传感器的长期使用限制(如老化问题)。        总结        温湿度传感器的校准是确保其测量精度的重要环节。通过定期校准,可以延长传感器的使用寿命,提高监测数据的准确性。如果您需要更详细的校准方法或工具选择,欢迎参考相关技术文档或联系我司专业工程师。
2025.07.09
温湿度传感器的安装方式有哪些?

温湿度传感器的安装方式有哪些?

        温湿度传感器的安装方式多种多样,具体取决于应用场景和环境需求。以下是几种常见的安装方式:        1.壁挂式安装        •特点:传感器固定在墙壁或设备表面,适合室内环境。        •适用场景:家庭、办公室、仓库等场所的温湿度监测。        2.管道式安装        •特点:传感器安装在管道或通风系统中,用于测量空气流通环境中的温湿度。        •适用场景:HVAC(暖通空调系统)、工业通风管道等。        3.嵌入式安装        •特点:传感器直接嵌入设备或系统中,适合集成应用。        •适用场景:智能家居设备、空调系统、工业自动化设备。        4.防水防尘式安装        •特点:传感器带有防水防尘保护设计,适合恶劣环境。        •适用场景:户外、潮湿环境、工业车间等。        5.无线式安装        •特点:通过无线通信模块(如Wi-Fi、蓝牙、ZigBee)进行数据传输,无需布线。        •适用场景:智能家居、远程监测、无线传感器网络。        6.立杆式安装        •特点:传感器安装在立杆或支架上,适合户外或高处监测。        •适用场景:农业大棚、气象站、户外仓库等。        7.表面贴装式安装        •特点:传感器直接贴在被测物体表面,适合小空间或特殊设备。        •适用场景:电子设备、小型机柜、精密仪器等。        总结        温湿度传感器的安装方式包括壁挂式、管道式、手持式、防水防尘式、无线式、嵌入式、立杆式、表面贴装式等,选择时需结合测量环境、设备需求和安装条件综合考虑。
2025.07.08
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码