德克西尔,专注工业传感——精准感知每一数据节点。

新闻资讯

Technical articles

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 新闻资讯 > 技术文章

浅谈矿用氢气传感器的检测方法

来源:李娟 时间:2023-10-09 22:07:25

        摘 要:矿用氢气传感器是煤矿常用的气体检测仪表,它能否正常工作性对于煤矿的安全生产有重要意义,因为需要对其进行全面检测,看其技术指标能够满足煤矿矿用产品的相关要求。该文详细阐述了矿用氢气传感器需要满足的主要技术指标,结合工作实际,提出了一种煤矿用氢气传感器的检测方法,工程实用证明:该方法简单、高效、可靠,能够有效地检测矿用氢气传感器是否达标,提高检测人员的工作效率和准确程度。该检测方法不仅可以供实验室检测人员借鉴,也为设计制造矿用氢气传感器提供了重要参考。

        矿用氢气传感器用于煤矿井下使用时,必须要有安标证和防爆证,要取得这两证,必须要去安标认可的实验室做相关的试验,该文主要介绍的就是矿用氢气传感器在检验机构的检测方法。煤矿气体传感器的检测通常是依据相应的AQ标准,如低浓度甲烷传感器的检测依据AQ6203-2006《煤矿用低浓度载体催化式甲烷传感器》,一氧化碳传感器的检测依据AQ6205-2006《煤矿用电化学式一氧化碳传感器》等,但是矿用氢气传感器目前还没有行业标准可依,因此该文介绍一种检测方法供参考。

        一、矿用氢气传感器的主要技术指标

        矿用氢气传感器的检测没有行标,我们根据行标MT209-90《煤矿通讯、检测、控制用电工电子产品通用技术要求》,并参考别的气体传感器的行标检测要求,确定氢气传感器需要检测的主要技术参数如下:

        (1)工作电压;工作电流。

        (2)测量范围。

        (3)基本误差:(建议满量程误差)。

        (4)输出信号制式。宜选用如下信号制式:1、电流型2、频率型3、数字信号型。

        (5)传输距离:煤矿井下与传感器配套使用的设备通常有分站和电源箱,因此需要检测此指标,传感器使用电缆的单芯截面积为1.5mm2时,传感器与分站和电源箱的传输距离应不小于2km,分站的显示值或传感器输出信号值(此处需要转换为氢气浓度值)应该在基本误差范围内。

        (6)响应时间:不大于60s(建议)。

        (7)报警功能。

        二、主要技术指标的检测方法

        (1)试验用气样和仪表

        ①试验需要用气样:一般来说,需要在矿用氢气传感器检测范围内平均选择4个点,要准备4个点的氢气标准气样,气样应采用国家计量部门考核认证的单位提供的气样,其不确定度不大于3%。

        ②气体流量计:测量范围:30~300mL/min,准确度: 2.5级。

        ③秒表:分度值为0.01s。

        ④频率计:0~1 000kHz,准确度:≤1×10-6。

        ⑤直流稳压电源:输出电压:0~30V,输出电流:2A。

        ⑥直流电流表。

        (2)基本误差、输出信号试验

        在矿用氢气传感器检测范围内平均选择4个点进行检测。此处以测量范围:(0~500×10-6)H2为例说明:

        气体按200mL/min的流量向传感器依次通入新鲜空气、125ppmH2、250ppmH2、375ppmH24种气样。每一种浓度的气样通入3min后,读取传感器显示值和输出信号值(此处需要转换为氢气浓度值)。这个过程要重复4次,然后取检测后3次的算术平均值,均不应超过基本误差的规定。

        按式①计算误差△(%):

        △=(Ai-An)×100/Am ①

        式中:Ai—显示值或输出信号值的平均值;

        An—标准气体的H2含量;

        Am--测量范围。

        (3)传输距离试验

        传输距离试验:将传感器与关联设备通过1.5mm2的模拟电缆,,记录关联设备的显示值或输出值(换算为氢气值),重复测定4次,取后三次算数平均值与标准值差值。电缆参数:R=12.8Ω/km单芯、L=0.8mH/km、C=0.06μF/km。

        (4)响应时间测试

        此处以测量范围:(0~500×10-6)H2为例说明:首先向传感器通入新鲜空气,待传感器零点显示值稳定后停止通入空气,立即通入375ppmH2,记录传感器的显示值此即为标定值;然后再通入新鲜空气,,待传感器零点显示值稳定后停止通入空气,再通入375ppmH2,记录传感器的显示值达到标定值90%所需要的时间;这个过程要重复3次,取其算术平均值。

        (5)报警功能测试

        此处以测量范围:(0~500×10-6)H2为例说明:将传感器的报警点设置在125ppmH2,待传感器零点显示值稳定后,缓慢通入略大于设定值报警点氢气浓度值的气样,当出现报警声、亮光信号时,记录此时传感器的显示值,同时计算设置的氢气浓度值报警点与显示值的差值。

        ①声级强度试验。

        在周围环境噪声不大于50dB(A)的情况下,设定一个能使传感器发出报警声音的氢气浓度值,将测试用的声级计放在传感器的报警声响器轴心正前方1m处,测量三次,取其算术平均值。

        ②光信号观测。

        传感器报警光信号能见度应在黑暗环境中距离传感器20m处进行观察。

        三、矿用氢气传感器的环境适应性试验

        矿用氢气传感器的环境适应性试验主要依据行标MT210-90《煤矿通信、检测、控制用电工电子产品基本试验方法》,并参考别的气体传感器的行标检测方法确定。

        (1)工作稳定性试验

        此处以测量范围:(0~500×10-6)H2为例说明:将调整好的传感器放在气体试验室,连续运行7d,每隔24h通入250ppmH2(量程的一半)标准气样对矿用氢气传感器测量一次,记录矿用氢气传感器显示值和输出信号值。试验期间不得调整传感器。按式②计算稳定性W(%):

        W=(Amax-Amin)×100/Am ②

        式中:Amax—读数最大值;Amin—读数最小值;Am--测量范围。

        (2)风速影响试验

        将传感器悬挂于测试风洞中,在风速为零时传感器的显示值为基准点。然后将风速调整为8m/s,人为使传感器绕悬挂轴线方向转动,寻找传感器受风速影响的位置。固定在此位置,每30s记录1次传感器显示值,共记录3次,取其算术平均值作为测定值。

        (3)工作温度试验

        ①低温工作试验。

        按MT210-90第23章的规定进行,采用非散热试验样品的温度渐变的低温试验方法,传感器通电,稳定2h后,通标准气样对矿用氢气传感器测量,测定传感器基本误差。以后每隔1h测定传感器基本误差一次,共3次。取其算术平均值作为测定值。

        ②高温工作试验。

        按MT210-90第23章的規定进行,采用非散热试验样品的温度渐变的高温试验方法,传感器通电,稳定2h后,通标准气样对矿用氢气传感器测量,采用测定传感器基本误差。以后每隔1h测定传感器基本误差一次,共3次。取其算术平均值作为测定值。

        (4)其他试验

        矿用氢气传感器还需要做低温贮存试验、高温贮存试验、交变湿热试验、振动试验、冲击试验、跌落试验,上述试验都可以按MT210-90规定的矿用产品试验方法确定。

        四、结语

        该研究者根据自己检测气体传感器的经验,依据MT209-90《煤矿通讯、检测、控制用电工电子产品通用技术要求》和MT210-90《煤矿通信、检测、控制用电工电子产品基本试验方法》,参考相关气体传感器的行标AQ6203-2006《煤矿用低浓度载体催化式甲烷传感器》,提出矿用氢气传感器的检测要求及检测方法,供实验室检测人员借鉴,也为设计制造矿用氢气传感器提供了参考。

        参考文献

        [1] 宋柏,刘志军.矿用气体传感器检定装置的研制[J].工矿自动化,2010(3):81-84.

        [2] 刘志军.矿用气体传感器校验装置[C].中国计量协会冶金分会2009年年会论文集.唐山:中国自动化学会,2009.

        


关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
温振传感器的常见故障有哪些?

温振传感器的常见故障有哪些?

        温振传感器作为工业设备状态监测的核心部件,其故障会直接影响数据准确性,进而导致设备异常误判或漏判。以下是其6类常见故障及具体特征,方便运维人员快速排查:        一、数据采集类故障:核心功能失效        这是最直接影响监测效果的故障,表现为无法获取温度或振动数据:        温度数据异常:显示固定值(如0℃、200℃或传感器最大量程),或与设备实际温度偏差超过±5℃(排除环境干扰后);        振动数据异常:振动值长期为0(非设备停机状态),或无规则跳变(如突然从1mm/s跳到10mm/s,无设备工况变化);        根源:多为传感器内部芯片损坏(如温度采集NTC芯片、振动压电陶瓷片故障),或信号处理电路烧毁(如长期过压、过流)。        二、安装与连接类故障:外部因素导致数据偏差        非传感器本身损坏,而是安装或接线不当引发的“假性故障”,占比超30%:        安装松动:螺栓固定型传感器未拧紧(扭矩不足,如M5螺栓未达到8N·m),导致振动传递失效——设备振动时,传感器“悬空”,数据比实际低50%以上;        接触不良:贴片式传感器未贴紧设备表面(中间有油污、灰尘),或磁吸式传感器磁力衰减(吸附力<50N),导致温度传导受阻(数据比实际低1020℃);        接线故障:信号线(如485、模拟量线)虚接、短路,或正负极接反(部分传感器无反接保护),表现为“偶尔有数据、偶尔断联”,或直接无输出。        三、环境适应性故障:恶劣工况引发性能下降        温振传感器多用于工业现场(如车间、机房),环境因素易导致故障:        高温老化:长期工作在超过传感器耐受温度的环境(如传感器额定上限85℃,实际工况95℃),会加速内部元件老化,表现为“数据漂移越来越严重”(如每月温度偏差增加1℃);        潮湿锈蚀:在高湿度(>90%RH)或有冷凝水的场景(如冷藏设备附近),传感器外壳或接线端子锈蚀,导致信号短路或接触电阻增大(振动数据波动变大);        粉尘/油污污染:粉尘进入传感器探头(如振动加速度计的敏感元件),会阻碍振动传递;油污覆盖温度探头,会减缓温度响应速度(如设备升温10℃,传感器需30秒以上才显示变化,正常应<10秒)。        四、电源与供电类故障:能量输入异常        传感器依赖外部供电(如DC1224V),供电不稳定会直接影响工作:        欠压故障:供电电压低于传感器最低要求(如额定12V,实际仅8V),导致传感器“低功耗保护”,停止数据采集,或输出数据精度下降(振动值偏差超±20%);        过压烧毁:供电电压突然飙升(如电网波动、电源模块故障,电压达30V以上),击穿传感器内部稳压电路,表现为“通电后无任何反应”(指示灯不亮、无数据输出);        电磁干扰:附近有大功率设备(如变频器、电机),未做电磁屏蔽,导致供电线路引入杂波,表现为“数据有规律波动”(如与电机启动频率同步的跳变)。        五、结构与机械类故障:物理损伤导致功能失效        多为外力或长期磨损引发,常见于设备振动剧烈的场景(如破碎机、风机):        探头损坏:温度探头(如热电偶、PT100探头)被设备机械撞击弯曲、断裂,或振动探头(如加速度计)的金属外壳变形,直接导致对应参数无法采集;        外壳破裂:传感器外壳(多为铝合金或塑料)受重物撞击、跌落(如安装时失手掉落,高度>1米),导致内部元件暴露,易受粉尘、水汽侵蚀,进而引发二次故障;        线缆老化:传感器连接线(尤其是带线缆的型号)长期随设备振动弯曲,或被油污腐蚀,导致线缆内部铜芯断裂,表现为“移动线缆时数据恢复,静止时断联”。        六、校准与漂移类故障:长期使用后的精度失效        传感器并非“一装永逸”,长期使用会出现精度漂移,属于“隐性故障”:        零点漂移:无振动、常温环境下(如设备停机,环境温度25℃),传感器显示温度≠25℃(偏差超±2℃),或振动值≠0(偏差超±0.1mm/s),且无法通过重新校准修正;        灵敏度下降:振动传感器对设备微小振动的“感知能力”变弱——如设备轴承早期磨损(振动值从0.5mm/s升至0.8mm/s),传感器仅显示从0.5mm/s升至0.6mm/s,错过故障预警时机;        根源:多为传感器内部敏感元件(如压电晶体、铂电阻)长期疲劳,或校准参数丢失(如存储芯片故障),通常需要返厂重新校准或更换元件。
2025.09.10
温振传感器输出信号类型有哪些?

温振传感器输出信号类型有哪些?

        温振传感器的输出信号直接决定了其与后端采集设备(如PLC、数据采集卡、工业网关)的兼容性、数据传输距离及测量精度,目前主流输出类型可分为“模拟信号”和“数字信号”两大类,不同类型适配场景差异显著。以下从信号分类、核心特性及选择逻辑三方面详细说明:        一、温振传感器主流输出信号类型(4类核心)        温振传感器需同时输出“温度信号”和”振动信号”,两类信号的输出形式通常一致(部分高端型号可混合输出),主流类型如下:        二、输出信号选择的4大核心逻辑(按需匹配是关键)        选择时需围绕“传输距离、精度需求、现场环境、系统兼容性”四大维度,避免“过度追求高端”或“适配性不足”:        1.优先看“传输距离”:决定信号抗干扰与布线成本        -短距离(≤10m):选“电压信号(0-5V/0-10V)”,如设备本地控制柜就近采集,成本低且无需复杂布线;        -中长距离(10-100m):选“4-20mA电流信号”,如车间内跨区域设备(如从生产线到控制室),抗干扰能力优于电压信号,适合工业强电磁环境;        -超远距离(>100m)或多设备组网:选“RS485/CAN总线”(有线)或“LoRa/NB-IoT”(无线),如厂区多车间设备联网、偏远地区风电场,总线型可减少线缆数量,无线型避免布线难题。        2.再看“精度与稳定性需求”:匹配监测目标        -低精度场景(如设备表面温度±1℃、振动加速度±5%误差可接受):电压信号或基础4-20mA信号即可,满足常规状态监测(如普通电机过热预警);        -高精度场景(如精密机床主轴振动、风电齿轮箱温度监测,需±0.1℃温度误差、±1%振动误差):选“数字信号(RS485/无线)”,数字信号无模拟信号的“传输损耗”,且支持数据校验,避免信号失真;        -高可靠性场景(如石油化工防爆区域、电力设备):优先选“4-20mA两线制”(布线简单,防爆认证易获取)或“工业级无线信号(LoRa/NB-IoT,需满足防爆等级)”。        3.结合“现场环境与布线条件”:减少部署难度        -布线便利场景(如新建车间、设备集中区域):选4-20mA或RS485总线,稳定性高,后期维护方便;        -布线困难场景(如老旧厂房改造、高空设备、户外分散设备):必选“无线信号”(如风机叶片监测用LoRa,户外光伏电站用NB-IoT),无需破坏原有结构,部署效率高;        -强干扰环境(如变频器附近、高压设备旁):避免选电压信号,优先选4-20mA电流信号(抗干扰强)或带屏蔽的RS485总线,减少信号干扰导致的测量误差。        4.最后匹配“后端采集系统”:避免兼容性问题        -若后端是传统仪表、PLC(如西门子S7-200、三菱FX系列):优先选“4-20mA或RS485(Modbus-RTU协议)”,多数PLC自带模拟量输入模块或RS485接口,无需额外加装设备;        -若后端是工业网关、云平台(如阿里云、华为云):选“无线信号(NB-IoT/5G)”或“RS485(需网关转以太网)”,支持数据直接上传云端,适配智能化管理需求;        -若后端是实验室数据采集卡(如NI采集卡):选“电压信号(0-5V)”,采集卡通常自带电压输入通道,无需转换,操作便捷。        三、总结:选择步骤简化        1.明确“传输距离”(短/中/长)→初步锁定信号类型(电压/电流/总线/无线);        2.确认“精度需求”(低/高)和“环境条件”(布线/干扰)→缩小范围;        3.匹配“后端设备兼容性”→确定最终输出信号。        例如:车间内10台电机集中监测,后端用PLC,传输距离20m→选4-20mA电流信号;户外50个光伏逆变器分散布置,后端连云平台,布线困难→选NB-IoT无线信号。
2025.09.05
如何判断氢气传感器的抗干扰能力

如何判断氢气传感器的抗干扰能力

        判断氢气传感器的抗干扰能力可以从以下几个方面入手:        1.产品规格说明        交叉灵敏度(Cross-sensitivity):查看传感器对其他气体(如CO、H₂S、CH₄等)的灵敏度,交叉灵敏度越低,抗干扰能力越强。        选择性(Selectivity):传感器对目标气体(氢气)的选择性越高,受其他气体干扰的可能性越小。        2.实际测试        干扰气体测试:在实验环境中,向传感器通入含有目标气体和干扰气体的混合气体,观察其是否能够准确检测氢气浓度而不受干扰。        稳定性测试:在复杂气体环境中长期运行传感器,验证其是否能够保持稳定性和准确性。        3.传感器结构设计        纳米材料或催化剂:部分传感器(如量子电导型传感器)采用纳米材料,可以显著提高抗干扰能力。        封装技术:传感器的封装设计是否能够有效隔绝灰尘、湿度或其他环境因素,直接影响其抗干扰性能。        4.数据处理算法        补偿算法:一些传感器通过内置算法对干扰气体进行补偿,从而提高检测的准确性。        软件过滤:传感器是否支持软件过滤功能,可以进一步降低干扰气体的影响。        5.品牌和制造商        选择知名品牌或有良好口碑的制造商,通常其传感器在设计上会考虑抗干扰能力,且提供更详细的测试数据和应用支持。        总结        抗干扰能力是氢气传感器的关键性能指标,可以通过产品规格、实际测试、结构设计、数据处理算法和品牌选择等方面综合判断。确保传感器在复杂环境中仍能准确检测氢气,避免误报或漏报,从而提高检测系统的可靠性和安全性。
2025.07.18
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码