新闻资讯

Technical articles

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 新闻资讯 > 问答资讯

企业园区噪声是如何产生的,有哪些来源?

来源:德克西尔 时间:2024-10-11 10:00:30

        企业园区噪声产生的来源多种多样,以下是一些常见的情况:
企业园区生产噪声

        一、工业生产设备

        1.动力机械

        企业园区内的各种泵类是常见的噪声源。例如,离心式水泵在运转时,叶轮高速旋转会引起水体的剧烈扰动,同时泵体自身的机械振动通过基础和连接管道向外传播噪声。其产生的噪声声级可能在 70 - 90 分贝之间。

        空气压缩机也是重要的噪声源。压缩机工作时,活塞的往复运动或者螺杆的旋转会产生强烈的空气动力性噪声和机械振动噪声。进气口和排气口的气流脉动产生的喷气噪声尤为突出,噪声强度可高达 90 - 110 分贝。

        2.加工设备

        机床在金属切削加工过程中会产生噪声。例如,车床在车削工件时,刀具与工件之间的摩擦、切削层金属的撕裂以及机床自身的传动部件(如齿轮、皮带等)运转都会产生噪声。这些噪声频率范围较广,声级一般在 75 - 95 分贝左右。

        冲床在冲压金属板材时,瞬间的冲击力会使机身产生强烈振动,发出巨大的撞击声。这种噪声具有脉冲特性,声级可达到 90 - 105 分贝,对周边环境影响较大。

        二、交通运输工具

        1.园区内车辆行驶

        叉车是企业园区内物料搬运的重要工具。其发动机运转产生的燃烧噪声和机械噪声,以及轮胎与地面的摩擦噪声,特别是在加速、刹车和转弯时,噪声会显得更加明显。叉车运行时的噪声一般在 70 - 85 分贝。

        园区内还有大量的货运卡车进出。卡车发动机功率较大,行驶过程中除了发动机噪声、轮胎噪声外,车身振动以及货物的晃动碰撞也会产生噪声。当卡车在园区内行驶速度为 30 - 50km/h 时,其产生的噪声可达 80 - 95 分贝。

        2.装卸货物操作

        装卸货物时,吊车的起吊和放下动作会引起机械部件的摩擦和碰撞。例如,港口企业园区的龙门吊在吊运集装箱时,电机的驱动声、钢丝绳与滑轮的摩擦声以及集装箱的碰撞声等混合在一起,产生的噪声级可能在 75 - 90 分贝左右。

        铲车在装卸散料(如煤炭、砂石等)时,铲斗与物料的接触、提升和卸载过程会产生噪声,尤其是铲斗与车辆车厢碰撞时会产生瞬间的高噪声,声级可达 80 - 95 分贝。

        三、人员活动

        1.生产作业中的交流和操作

        在一些大型的生产车间,工人之间需要通过较高的声音进行交流沟通,如在嘈杂的机械加工车间,工人呼喊声会增加环境噪声。同时,手工工具的使用,如使用手动扳手拧紧螺母时,工具与工件之间的碰撞也会产生一定的噪声,这类噪声声级一般在 60 - 75 分贝左右。

        2.公共区域活动

        在企业园区的食堂、休息区等公共区域,人员的聚集会产生嘈杂的说话声、脚步声以及桌椅的挪动声。食堂内餐具的碰撞声也较为常见,这些活动产生的噪声一般在 60 - 70 分贝左右。

        四、建筑施工与维护

        1.建筑施工过程

        企业园区内如果有新建厂房或者设施改造等建筑施工活动,打桩机打桩时产生的强烈冲击振动噪声,声级可高达 100 - 120 分贝。混凝土搅拌机在搅拌过程中,电机运转声、搅拌叶片与罐体的摩擦声等混合产生的噪声,其声级可能在 80 - 95 分贝左右。

        2.设施维护维修

        当对企业园区的管道系统进行维修时,如使用电动工具切割管道、焊接设备进行焊接作业等,都会产生噪声。切割管道的噪声级可能在 85 - 100 分贝左右,焊接过程中的电弧噪声和通风设备噪声也在 70 - 85 分贝之间。



关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Drksir-13515810281

相关内容推荐
氢能源技术未来发展趋势分析

氢能源技术未来发展趋势分析

        氢能源,这个曾经被不少人认为是“未来能源”的概念,正在一步步走向现实。随着全球对绿色能源需求的增加,氢能源因其清洁、高效和可持续的特点,逐渐成为能源转型的重要方向。那么,未来氢能源技术会朝着哪些方向发展呢?让我们一起来聊聊。        一、制氢技术:更高效、更清洁        制氢技术是氢能源产业链的起点,也是决定氢能源能否大规模应用的关键。目前,主要的制氢方式有电解水制氢、工业副产氢提纯和甲烷重整制氢等。但这些技术还存在成本高、效率低或碳排放等问题。未来,制氢技术将朝着更高效、更清洁的方向发展。        1.电解水制氢:绿氢的“主力军”        电解水制氢的核心是利用电力将水分解成氢气和氧气。如果用可再生能源(比如风能、太阳能)作为电力来源,就能制取“绿氢”,也就是零碳排放的氢气。随着可再生能源成本的下降和电解水技术的优化,绿氢的生产成本会越来越低,成为未来制氢的“主力军”。想象一下,未来的加氢站可能直接用太阳能发电来制氢,既环保又省钱。        2.工业副产氢:变废为宝        在化工、钢铁等行业中,生产过程中会产生大量副产氢。这些氢气以前大多被浪费掉了,但未来,通过技术升级,这些氢气可以被高效提纯并利用。这样一来,不仅减少了资源浪费,还能降低制氢成本,一举两得。        3.新型制氢技术:光催化和生物制氢        光催化制氢和生物制氢是两种非常有潜力的新型技术。光催化制氢利用太阳光分解水,理论上可以在任何有阳光的地方制氢,完全零排放。而生物制氢则通过微生物或植物代谢产生氢气,这种方式更加环保,也更容易实现可持续发展。虽然这些技术目前还处于实验室阶段,但未来一旦突破,可能会彻底改变制氢的方式。        二、储运技术:更安全、更经济        氢气的储存和运输是氢能源发展的“拦路虎”。氢气不仅易燃易爆,而且储存密度低,运输成本高。未来,储运技术必须突破这些瓶颈,才能让氢能源真正走进千家万户。        1.高压储氢:轻量化、耐高压        高压储氢是目前最常用的方式,但储氢罐的重量和成本一直是问题。未来,通过材料科学的进步,可能会研发出更轻量化、耐高压的储氢材料。比如,用碳纤维复合材料制成的储氢罐,不仅更安全,还能大幅降低重量,提升储氢效率。        2.液氢储运:长距离、大规模        液氢储运技术适用于长距离、大规模的氢气运输。液氢的体积比气态氢小得多,运输效率更高。但液氢的制备需要复杂的冷却技术,成本也比较高。未来,随着液化技术的进步和成本的降低,液氢储运可能会成为重要的运输方式之一。        3.固态储氢:高密度、安全可靠        固态储氢通过金属氢化物或纳米材料储氢,具有储氢密度高、安全性好的优点。未来,如果固态储氢技术能够突破,氢气的储存和运输将变得更加方便和安全。比如,未来的氢气瓶可能像普通水瓶一样轻便,但储存的氢气量却非常大。        三、氢能应用:更多元、更普及        氢能源的应用领域非常广泛,从交通到工业,从建筑到电力,几乎无所不能。未来,氢能的应用将更加多元化和普及化。        1.燃料电池汽车:加氢快、续航长        燃料电池汽车(FCEV)以其零排放、长续航和快速加注的特点,成为氢能交通的重要方向。未来,随着加氢站网络的完善和燃料电池技术的进步,燃料电池汽车的市场占有率可能会进一步提升。也许在不久的将来,氢能汽车会像现在的电动车一样普及。        2.氢能工业和建筑:高效又环保        氢能可以用于工业生产中的高温加热、冶金和水泥制造等过程,同时也可以作为建筑供暖和发电的能源来源。未来,氢能可能会在工业和建筑领域发挥更大的作用。比如,工厂可以用氢能代替传统的化石燃料,减少碳排放;家庭可以用氢能发电,实现能源自给自足。        3.氢能储能:解决可再生能源的“不稳定”        可再生能源(如风能、太阳能)最大的问题是波动性和间歇性。氢能可以作为一种储能介质,把多余的可再生能源转化为氢气储存起来,需要的时候再用。这种方式不仅解决了可再生能源的“不稳定”问题,还提高了能源的利用率。        四、技术创新与智能化管理:氢能的“大脑”和“心脏”        氢能源技术的未来发展离不开技术创新和智能化管理的支持。这两者就像氢能的“大脑”和“心脏”,缺一不可。        1.材料科学:让氢能更高效、更耐用        氢能源技术的核心材料包括催化剂、膜材料和储氢材料等。通过研发新型材料,可以提高氢能源系统的效率和寿命,降低成本。比如,未来的燃料电池可能会用上更高效的催化剂,让发电效率翻倍。        2.智能化管理:让氢能更“聪明”        氢能源系统的智能化管理可以实现氢气的实时监测、优化调度和安全预警。通过物联网、大数据和人工智能技术的应用,氢能源系统将更加高效和可靠。比如,未来的加氢站可能会用智能系统来预测氢气需求,自动调整生产量,避免浪费。        五、政策支持与市场环境:氢能的“推手”        政策支持和市场环境是氢能源技术发展的外部驱动力。未来,随着各国政府对氢能源的重视,相关政策和法规将逐步完善。        1.政府补贴与税收优惠        各国政府通过补贴、税收优惠和采购政策,鼓励氢能源技术的研发和应用。这些政策将加速氢能源技术的商业化进程。比如,有些国家已经对购买燃料电池汽车的消费者提供补贴,刺激市场增长。        2.基础设施建设        加氢站、氢气管道等基础设施的建设是氢能源广泛应用的前提。未来,随着基础设施的完善,氢能源的市场环境将更加成熟。想象一下,未来的城市里,加氢站可能和加油站一样普及,氢能汽车的用户再也不用担心找不到加氢的地方。        六、未来展望:氢能的“黄金时代”        综合来看,氢能源技术的未来发展趋势是高效化、清洁化、多元化和智能化。随着技术的进步和政策的支持,氢能源将在全球能源结构中占据重要地位,为实现碳中和目标提供有力支持。        当然,氢能的发展也面临一些挑战,比如技术突破、成本降低和市场推广等。但只要各方共同努力,通过技术创新和合作,这些挑战都将被克服。未来,氢能可能会成为全球能源转型的重要支柱,为人类创造一个更加清洁、可持续的能源未来。
2025.04.28
自动配气系统在实验室科研领域的重要应用

自动配气系统在实验室科研领域的重要应用

        实验室科研是推动科学进步和技术创新的核心领域,而实验条件的精确控制则是科研成功的关键。在众多实验条件中,气体环境的配比与控制尤为重要。无论是化学合成、材料制备,还是生物培养、环境模拟,实验中所需的气体成分和比例都必须精准无误。然而,传统的手动配气方式不仅效率低下,还存在操作复杂、安全隐患等问题,难以满足现代科研对高效性、安全性和精确性的要求。        近年来,随着自动化技术的快速发展,自动配气系统逐渐成为实验室科研领域的“得力助手”。它通过智能化的气体配比控制,不仅大幅提升了实验的效率和准确性,还为科研人员创造了一个更加安全、便捷的实验环境。        自动配气系统通过集成高精度传感器、智能控制系统和气体流量调节装置,能够实现对多种气体的精准配比与实时监控。其核心优势体现在以下几个方面:        1. 高精度配气,保障实验结果的可靠性         自动配气系统采用先进的质量流量控制器(MFC)和比例调节技术,能够将气体的配比精度控制在0.1%以内。这种高精度的配气能力不仅避免了传统手动配气方式中的人为误差,还为实验结果的准确性提供了有力保障。        2. 智能化控制,提升实验效率         现代自动配气系统配备了智能化管理平台,支持预设实验参数、远程监控和自动化运行。科研人员只需通过简单的操作界面输入实验需求,系统即可自动完成气体配比、流量调节和实验过程的监控。这种智能化设计不仅节省了大量时间,还让科研人员能够将精力集中在实验数据分析和创新研究上。        3. 多重安全保护,确保实验安全         气体实验往往伴随着易燃、易爆或有毒气体的使用,这对实验安全提出了极高的要求。自动配气系统内置了多重安全保护功能,包括气体泄漏检测、压力异常报警和紧急切断装置。这些功能能够有效预防实验中潜在的安全风险,为科研人员提供了一个更加安全的实验环境。        4. 灵活适应多种实验需求         不同实验对气体配比的要求千差万别,自动配气系统通过模块化设计和灵活的配置方案,能够轻松满足多种实验需求。无论是单一气体的使用,还是复杂气体混合物的配比,系统都能提供定制化的解决方案,充分适应科研的多样性。        自动配气系统在实验室科研中的应用范围不断扩大。例如,在环境科学领域,科研人员通过自动配气系统模拟不同大气成分的环境,研究气候变化对生态系统的影响;在材料科学领域,系统被用于制备新型纳米材料,精确控制反应气体的比例以获得理想的材料性能;在生命科学领域,自动配气系统则被广泛应用于细胞培养和生物代谢研究,确保实验条件的一致性和稳定性。        结语        自动配气系统作为实验室科研的重要工具,正在以其高精度、智能化和安全性的特点,推动科研工作迈向更高水平。它不仅解决了传统配气方式中的痛点,还为科研人员提供了更加便捷、高效的实验环境。
2025.03.24
氢能源汽车氢混合气配气系统发展动态与趋势

氢能源汽车氢混合气配气系统发展动态与趋势

        在全球能源结构向清洁化转型的背景下,氢能源汽车凭借零排放、高能量密度和长续航优势,成为汽车工业变革的重要方向。而氢混合气配气系统作为燃料电池汽车(FCEV)的核心技术之一,其性能直接影响整车的效率、安全性和商业化潜力。本文结合行业动态与技术突破,解析氢混合气配气系统的发展路径与未来趋势。        一、氢混合气配气系统的核心价值        氢混合气配气系统通过精确调控氢气与氧化剂(如空气)的混合比例,为燃料电池高效运行提供保障。其技术价值体现在三大维度:        1.效率优化:燃料电池的能量转换效率与氢氧配比直接相关。配气系统通过动态调整气体比例(如氢空比1:3至1:5),可将燃料电池效率提升至60%以上,远超传统内燃机。        2.安全强化:氢气在空气中的可燃浓度范围极宽(4%-75%),配气系统集成多级传感器与冗余控制,实现泄漏检测精度≤1ppm,压力波动控制误差<0.5%,大幅降低爆燃风险。        3.工况适应性:针对低温启动(-30℃)、高海拔缺氧等极端场景,系统通过自适应算法调节气体流量,确保燃料电池输出稳定性。例如,丰田Mirai的配气系统可在10秒内完成冷启动,满足全天候使用需求。        二、市场驱动:政策、技术与商业化共振        全球氢混合气配气系统市场规模从2020年的12亿美元增至2023年的20亿美元(数据来源:MarketsandMarkets),复合增长率达18.5%。市场爆发由三重动力推动:        1.政策红利释放        -中国:“十四五”氢能规划明确2025年燃料电池汽车保有量达5万辆,补贴政策向核心部件倾斜,配气系统研发享受最高40%的税收抵免。        -欧盟:通过《氢能战略》投入470亿欧元,要求2030年氢能重卡占比超30%,推动博世、大陆等企业加速配气系统本土化生产。        -日韩:丰田、现代联合政府建立“氢能经济联盟”,计划2030年前将燃料电池系统成本降低60%,配气模块是重点攻关方向。        2.技术迭代降本        -精密控制技术:质量流量控制器(MFC)精度突破±0.1%,成本下降50%(据BloombergNEF数据),助力系统单价从2020年的1.2万美元降至2023年的8000美元。        -模块化设计:如Ballard推出的集成式配气单元,体积缩小30%,兼容80-120kW电堆,适配乘用车至商用车的全场景需求。        3.商业化进程提速        -乘用车领域:丰田Mirai全球累计销量突破2万辆,现代Nexo实现-30℃极寒续航550公里,验证配气系统可靠性。        -商用车突破:戴姆勒GenH2重卡搭载双模式配气系统,氢气消耗量低至7kg/100km,推动长途货运场景落地。        三、未来趋势:标准化、智能化与生态化        1.行业标准统一迫在眉睫        ISO/TC197正在制定《燃料电池车辆氢系统安全标准》,拟于2025年强制要求配气系统通过IP67防水、EMC抗干扰等12项认证,倒逼企业技术升级。        2.车-站-云协同网络        -配气系统数据接入氢能物联网平台,实现加氢站智能调度。如壳牌在上海建设的“智慧加氢站”,可提前30分钟预判车辆需求,降低氢气储运损耗。        3.多元化技术路线竞争        -绿氢与蓝氢混合配气技术兴起:冰岛CarbonRecyclingInternational公司开发CO₂捕捉模块,将工业副产氢纯度提升至99.999%,成本较绿氢低30%。        结语        氢混合气配气系统正从单一功能模块向智能化、网络化能源管理中枢演进。随着技术标准完善与产业生态成熟,这一系统将成为氢能社会构建的关键支点,助力交通领域碳中和目标的实现。
2025.03.24
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码