案例展示

铸造产品品质

×

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

首页 > 案例展示

Case study of bridge health full-cycle monitoring system solution project

来源:Drksir 时间:2023-03-10 14:20:01

         As the world's largest bridge country, China has about 100000 large urban bridges, about 70000 railway bridges and more than 800000 highway bridges. In the whole life cycle of the bridge, the maintenance period accounts for 90% of the bridge life. The long-term normal use of the bridge depends not only on the construction quality, but also on the management and maintenance level in the later stage. The traditional inspection methods have many shortcomings, such as requiring a lot of manpower, material resources and financial resources, affecting the normal traffic operation, long cycle, and poor real-time performance, which limit its direct and effective application in the health monitoring and early warning of large bridges.
Solution of bridge health full-cycle monitoring system

       With the development of the Internet of Things technology, especially the maturity of high-precision inclination sensor technology, the bridge health monitoring system integrating modern testing and sensing technology, network communication technology, signal processing and analysis technology, mathematical theory and structural analysis theory and other disciplines can greatly extend the content of bridge online monitoring, and can continuously, real-time and online monitor and evaluate the "health" status of the structure, It has great guiding significance for the operation safety of bridges and the improvement of the management level of bridges.

       In bridge health monitoring, inclinometers are usually arranged on the bridge deck, tower, pier and suspension cable to measure the deformation of the bridge under load and evaluate the integrity and stability of the bridge structure. Among them, the main purpose of bridge deck deformation monitoring is to determine the important technical parameters such as the stiffness and structural bearing capacity of the bridge in the vertical direction, which are the key reference indicators in the process of bridge identification, reconstruction and new bridge acceptance. Bridge tower is another place that needs to be measured by inclination sensor. The inclination value of bridge tower, to a certain extent, reflects whether the integrity and stability of the bridge structure is affected, and then whether it will endanger the safety of the bridge.

            The monitoring items of super-large bridges can be divided into two parts: load source and structural static and dynamic response. The general principles for determination are as follows:

1. Principles for selection of monitoring items

① According to the importance of various structural components of the bridge in structural safety and the vulnerability of components;

② According to the geographical environment and climatic environment characteristics of the bridge, determine the factors affecting the stress of the bridge structure;

③ Starting from the needs of structural state assessment and operation and maintenance management, it is necessary to make technical preparations for future state identification and structural safety evaluation;

④ The special structure of the bridge should be monitored;

⑤ According to the characteristics of the bridge, capital investment and economy, real-time monitoring and regular monitoring are combined to realize bridge monitoring and early warning.

2. Based on the above principles, combined with the operating environment characteristics and structural stress characteristics and structural characteristics of the bridge site, the monitoring items are divided into environmental parameters and load sources, structural response monitoring, structural durability monitoring and other monitoring:

(1) Load source monitoring items:

① Wind load (including wind speed and direction);

(2) Structural response monitoring:

① Main beam displacement monitoring; ② Stress and strain monitoring; ③ Cable force monitoring of stay cables; ④ Tower inclination monitoring;

          The principle of product selection is: 1 Select the current international advanced technical equipment to ensure the good accuracy, stability, durability and scalability of the system; 2. Select products with good versatility and easy procurement in the market to ensure the maintainability and replaceability of the system; 3. Select products with high performance-price ratio to ensure the best operation of the system at the lowest cost and realize bridge monitoring and early warning; 4. The system has reached the international advanced level. MDR-3700 series ultra-high precision inclination sensing instruments produced by Dexair are selected as high-precision inclination sensing instruments, with sampling frequency of 1Hz.



关注公众号

了解更多传感器知识

公众号:德克西尔

传感器产品二维码

加微信

购买传感器产品

微信号:Dkxr3000

相关内容推荐
内蒙古兴安盟京能煤化工可再生能源绿氢替代示范项目盛大开启

内蒙古兴安盟京能煤化工可再生能源绿氢替代示范项目盛大开启

        近日,内蒙古自治区兴安盟京能煤化工可再生能源绿氢替代示范项目正式拉开了建设帷幕,标志着该地区在推动能源结构转型、践行绿色发展理念的道路上迈出了坚实的一步。作为盟开发区继年产30万吨氨溶液项目和金风科技兴安盟风电耦合制50万吨绿甲醇项目之后的又一重大举措,该项目总投资高达36亿元,旨在打造集风电、绿氢生产和储能于一体的清洁能源综合体。        一、绿氢替代,能源转型新里程        本次开工建设的绿氢替代示范项目,主要利用丰富的可再生能源资源,尤其是风电,替代传统的化石能源,生产清洁、高效的绿氢。项目规划新建一座装机容量达50万千瓦的风电场,预计建成后将为绿氢生产提供源源不断的绿色电力。这不仅有助于减少对煤炭等非可再生资源的依赖,降低碳排放,而且有助于推动兴安盟乃至内蒙古自治区能源结构的优化升级,加速向低碳、绿色、可持续的能源体系过渡。        二、先进生产线与储能设施,打造绿氢产业链闭环        项目的核心部分包括一条年产能可达2.6万吨的绿氢生产线。这条生产线采用先进的电解水制氢技术,将风电产生的电能高效转化为氢气,全程零碳排放。同时,项目还将配套建设储能设施,通过储能系统对风电的波动性进行平抑,确保绿氢生产的连续性和稳定性,进一步提升整个绿氢产业链的经济性和环保效益。        三、经济效益与社会效益双重驱动,助力地区经济发展与环境保护        兴安盟京能绿氢替代示范项目的启动,对于地区经济发展与环境保护具有双重意义。首先,项目总投资36亿元,将有力拉动当地固定资产投资,为当地民众创造大量的就业机会,为兴安盟的经济增长注入强劲动力。其次,绿氢作为清洁、高效的能源载体,其广泛应用将有助于改善地区能源结构,减少温室气体排放,助力实现“双碳”目标,为兴安盟的生态文明建设作出重要贡献。        四、结语        内蒙古兴安盟京能煤化工可再生能源绿氢替代示范项目的开工建设,标志着该地区在绿色能源转型道路上迈出了坚实的一步。通过构建风电、绿氢生产与储能三位一体的清洁能源体系,项目不仅将有力推动兴安盟乃至内蒙古自治区能源结构的优化升级,而且将为我国乃至全球探索可再生能源大规模制氢、应用绿氢的路径提供宝贵的实践经验。未来,随着项目的顺利推进与投产,我们有相信兴安盟在构建绿色、低碳、可持续的能源体系方面取得更大的突破,为我国实现“双碳”目标、推动经济社会高质量发展贡献力量。
2024.04.25
韩国最大加氢站运营商Hynet深陷财政危机:股东撤资、亏损加剧,行业前景引关注

韩国最大加氢站运营商Hynet深陷财政危机:股东撤资、亏损加剧,行业前景引关注

        近期,据报道,韩国最大的加氢站运营商——Hynet,正面临着严重的财政危机。由于其最大股东拒绝继续向亏损业务投入资金,公司经营压力持续增加。Hynet作为韩国氢能源基础设施建设的领头羊,运营着全国168座加氢站中的45座,却在过去两年中持续亏损,如今更是面临破产风险。        一、巨额亏损凸显经营困局        数据显示,Hynet在2021年已录得47亿韩元的亏损,这一颓势并未在2022年得到有效遏制,反而进一步扩大,全年亏损额高达84亿韩元。连续两年的巨额亏损,揭示了公司在运营加氢站业务中所面临的严峻挑战。尽管2023年的业绩数据尚未公布,但据知情人士透露,Hynet当前财务状况极度紧张,急需资金注入以避免破产厄运。        二、最大股东撤资,融资困境加剧        在公司深陷财务危机之际,Hynet的最大股东却选择抽身而出,拒绝为亏损业务继续注资。这一决定无疑为本已艰难的公司雪上加霜。作为支撑公司运营的重要资金来源,大股东的撤资无疑削弱了Hynet的现金流,使其在寻求外部融资、改善经营状况的道路上举步维艰。        三、新股发行难挽颓势        面对严峻的财务状况,Hynet曾尝试通过发行新股来筹集资金,以期缓解燃眉之急。然而,新股发行的效果似乎并不理想,未能从根本上改变公司的财务困境。这反映出资本市场对Hynet未来盈利能力及偿债能力的担忧,投资者信心的缺失使得公司融资难度进一步加大。        四、未来出路何在?        Hynet的困境不仅关乎自身的生存与发展,更牵动着韩国乃至全球氢能源产业的神经。作为韩国加氢站网络的重要组成部分,Hynet的稳定运营对于推动韩国氢能源汽车市场的发展、实现国家绿色能源转型目标具有重要意义。因此,如何破解当前的财务困局,实现业务扭亏为盈,成为了摆在Hynet面前的紧迫难题。        一方面,公司需深度思考现有业务模式,寻找降本增效、提升运营效率的途径,比如优化站点布局、引入先进设备、加强供应链管理等。另一方面,积极寻求政府援助、引入战略投资者、探索多元化的融资渠道也不失为应对之道。此外,与汽车制造商、能源供应商等产业链上下游企业深化合作,共建氢能源生态系统,共享市场收益,或许能为Hynet打开新的发展空间。        总之,Hynet的财政危机不仅暴露了加氢站运营商业模式的脆弱性,也引发了对氢能源产业可持续发展路径的深度思考。如何在保证安全、高效的前提下,实现加氢站的商业化盈利,将是全球氢能源产业共同面临的挑战。对于Hynet而言,能否成功破局,走出当前困境,不仅关乎其自身的生死存亡,也将对韩国乃至全球氢能源产业的发展产生深远影响。
2024.04.24
车载供氢系统泄漏检测:关键模块解析与安全保障措施

车载供氢系统泄漏检测:关键模块解析与安全保障措施

        车载供氢系统是氢燃料电池电动汽车(FCEV)的核心组成部分之一,其主要包含加氢模块、调压模块和储氢模块。这些模块协同工作,确保安全、高效地存储和供应氢气给燃料电池堆进行电能转化。针对氢气泄漏问题,对整个供氢系统需要进行严格的泄漏检测至关重要。下面详细说明各个模块的功能以及如何进行泄漏检测:        一、加氢模块        功能:负责从外部加氢站接收高压氢气,通过加氢口、加氢枪等设备将氢气注入到车载储氢系统中。加氢过程通常涉及快速连接器、电磁阀、温度和压力传感器等设备,确保加注过程的安全与精准。        泄漏检测:加氢模块在设计和制造阶段应遵循严格的标准,进行静态和动态泄漏测试。静态测试包括对所有连接件、阀门、密封面等进行氦检漏或其它无损检测方法,确保在非工作状态下无明显泄漏。动态测试则模拟实际加氢过程,检查在加注压力下整个系统是否有泄漏。此外,加氢接口处通常配备防爆泄压装置和自动关闭功能,一旦检测到过压或泄漏,能迅速切断氢气供应。        二、调压模块        功能:调压模块(如组合阀)负责将储氢瓶中的高压氢气减压至燃料电池堆所需的合适工作压力,同时保持稳定的氢气输出流量。它通常包含压力调节阀、安全阀、过流保护装置等组件,确保燃料电池在各种工况下都能获得稳定且安全的氢气供应。        泄漏检测:调压模块同样需要经过严格的出厂前泄漏测试,包括对阀体、接头、密封件等进行氦检漏或其它无损检测。此外,定期的维护检查中,技术人员会使用专用泄漏检测设备(如氢气探测仪、超声波泄漏探测器等)对调压模块进行现场检测,确保在运行状态下没有微小泄漏。        三、储氢模块        功能:储氢模块主要由高压复合材料气瓶、瓶阀、瓶尾TRD(热熔栓)、气瓶支架及连接管路组成,用于在高压下储存大量的氢气。气瓶采用高强度、轻质的复合材料制造,能够承受高达70MPa的压力,同时具备良好的耐疲劳性和耐腐蚀性。        泄漏检测:        •出厂检测:气瓶在制造完成后,需通过一系列严格的质量检验,包括压力循环试验、爆破试验、泄漏试验等。其中,泄漏试验通常采用氦气或氢气作为示踪气体,通过检测泄漏率是否低于规定限值来确认气瓶的整体密封性能。        •安装后检测:气瓶安装到车辆上后,还需进行整体系统的泄漏检测。这包括对气瓶与管路连接处、瓶阀、TRD等关键部位进行细致的泄漏检查。车辆需配备车载氢气泄漏检测系统,通过车载氢气浓度传感器能够在车辆运行期间持续监测氢气浓度,一旦检测到异常升高,立即触发警报并采取相应措施。        •定期维护:按照厂家推荐的维护周期,应对储氢模块进行定期的泄漏检测和安全检查。这包括目视检查外部损伤、腐蚀情况,使用专业设备检测气密性,以及验证安全装置(如热熔栓、安全阀)的工作状态。        总的来说,供氢系统的泄漏检测贯穿于设计、制造、安装、使用和维护全生命周期,通过多层防护和定期检测,最大限度地降低氢气泄漏风险,确保车辆性能稳定和用户安全。现代FCEV的供氢系统设计和制造标准极其严格,符合国际和各国相应的安全法规要求,旨在提供一个高度可靠且安全的车载氢能源系统。
2024.04.24
在线客服

业务咨询

技术咨询

售后服务

PC端自动化二维码
135-1581-0281 (即时通话) 459879587 (在线询价) 135-1581-0281 (长按复制)
扫码加微信